Category Archives: Industrial Software

Why Australia Needs to Invest in Future Skills for a Thriving Economy

St. Joseph, Michigan, USA, 2022-Jun-17 — /EPR INDUSTRIAL NEWS/ — As our world becomes ever more technologically advanced, so the requirements for skills are undergoing a dramatic shift. While there has historically been a fear within workforces that computers and robotics will reduce the need for humans to carry out tasks, the opposite is proving to be the case.

Instead, automation is removing the need for humans to carry out tasks that are repetitive and boring, and replacing this with an increasing level of non-routine cognitive tasks. Rather than reducing the number of jobs on offer, tech is causing a shift that requires very different skills from workers.

With this comes a challenge for future investment into the skills that will be in demand in the upcoming years and decades.

The Skills that are Driving Economic Growth

Since before the Industrial Revolution it’s fallen to humans to carry out multiple repetitive tasks that have driven economic growth. Although machines have now taken over much of this element, this has created many other higher order and digital openings that demand an increased level of human expertise in order for an economy to advance. The issue with this is that it’s leading to a shortage of those adept to fill the roles – something that needs to be addressed now if we’re to avoid a dramatic skills shortage in the near and medium-term future.

The so-called STEM skills of science, technology, engineering and mathematics underpin what’s needed to drive the circle of elements that are needed for the future. This circle is made up of the following:

  • Future skills
  • Innovation
  • Thriving economy
  • Jobs
  • Solving social, environmental and economic challenges.

These 5 linked elements are crucial for future economic growth, the well-being of the population and addressing environmental issues, such as disease, food and water supplies alongside climate change.

STEM skills aren’t solely limited to the disciplines mentioned above. Instead, a cross disciplinary aspect is what will be needed to solve many of the quandaries that face future generations. Education is key to developing the critical thinking and capabilities that will arm today’s children and young adults with the skills to solve many of today’s environmental issues as well as ensuring that Australia remains a player on the global stage.

Future predictions say that by 2030 it’s expected that the amount of time workers spend solving problems will double, with more than 77% of their time using mathematical and scientific skills.

STEM Education will Drive the Future Workforce

The shift that’s come from technological change means that going forward virtually everyone is going to need at least a basic level of STEM skills. This will, of course, be spearheaded during mandatory education for those of school age, but also through upskilling of those already in employment.

While this will represent significant cost – it’s been estimated at around $600 billion from 2015 to 2030 – it’s also bringing about economic gain. While this might not be as much as the cost of education in the short term, in the medium to long term this on-going expenditure is essential for a future thriving Australian economy.

Manufacturing and engineering are two examples that are representative of current investment at both local and national scale. Australia’s once world-leading manufacturing industry was allowed to reduce to a mere shadow of its glory days. Thankfully, and with substantial government investment, this is beginning to be turned around.

This, along with strategic education of the current and future workforce, is exactly what’s needed to ensure that our country once again becomes a force to be reckoned with.

Precision engineering and CNC machining providers, SixDe, are at the forefront of this new way of working. Not only has the company invested into its workforce and capabilities, but it provides local WA businesses with an expert supplier in their own back yard.

Discover what makes SixDe stand out from the crowd at https://sixde.com.au and get in contact to discuss your requirements.

Jason De Silveira
Managing Director – SixDe
https://sixde.com.au/

Founder and director of specialist manufacturing and engineering companies for both, SixDe and Nexxis Pty Ltd. Jason has over 20 years’ project management experience on installations, commissioning and start-ups in Australia, Singapore, Thailand, Kuwait, Ghana and Dubai.

SixDe, a Nexxis Company, is a 450m2 locally owned CNC machine shop that delivers manufacturing, rapid prototyping, tooling, and engineering solutions to a variety of Australian industries. Its bespoke precision machining service has delivered competitive and cutting-edge solutions for mining, oil and gas, construction and building companies in Australia and overseas.

Haizol adds 3D Printing to its range of manufacturing services

LONDON, 6-Jun-2022 — /EPR INDUSTRIAL NEWS/ — Haizol launch a new capability to add to their vast array of services, now offering 3D printing to customers worldwide. They have partnered with some of the best manufacturers in China for additive manufacturing to deliver custom prototypes and end-use production parts for buyers worldwide.

Haizol’s 3D printing services have access to a huge network of factories with the best 3D printing machines in the industry. An online service focused on FDM, SLS, MJF and SLA, manufacturing custom projects from prototype to full scale production. With over 40 metals and plastics available, the platform can cater to all kinds of projects.

Haizol bring highly qualified facilities to the hands of buyers worldwide, with certified manufacturing including ISO9001, ISO13485, & AS9100.

Simply upload a CAD file for an instant quote, and receive manufacturability advice, with fast lead times. All uploads are secure and confidential.

Haizol’s manufacturing processes include Prototyping, Molding, Stamping, CNC Machining, Casting, Fabrication and more. Such comprehensive manufacturing capabilities allow Haizol to meet the needs of many industries across a wide range of product categories, including Automotive Parts & Equipment, Aerospace, Electrical Equipment, Electronics, Design & Engineering, Fabricated Metals, Medical Supply & Equipment, Machinery & Tools, Packaging, Toys, as well as general consumer goods.

Since its inception in 2015, Haizol has enthusiastically awarded multiple rounds of committed financial investment from the world’s top establishment and financial institutes such as Haier, Woofoo Capital, Eastern Bell Capital, Stala Capital and Hongtai Capital Holdings. Their clients include MicroPort, Roche, Siemens, Haier, Zeiss, Whirlpool, Rocker, and Hybrid Racing.

For more information or to learn more, head over to their website at www.haizolglobal.com.

SOURCE: EuropaWire

SkyRFID completes transfer of assets and management from Canada to the U.S.A.

Lansdowne, Virginia, United States, 2022-Jan-19 — /EPR INDUSTRIAL NEWS/ — SkyRFID Inc. recently completed the transfer of assets and management from Canada to the U.S.A. advancing the support of U.S. customers, including the U.S. government. Long-time technology and equity partners, Geoff Dewhurst and Tim Shinbara, received approval from their respective Boards to continue the 30+ years of SkyRFID development, fulfillment, and operations from within the U.S. in early 2020 and founded SkyRFID, LLC in Lansdowne, Virginia in November of 2020. For SkyRFID, Inc., 2021 was a winddown and dissolution period. The two partners will continue to operate SkyRFID, LLC with Mr. Shinbara being named CEO and President and Mr. Dewhurst retaining Chief Architect duties and responsibilities.

Having merged the talent and resources from Mr. Shinbara’s ventures and experience into SkyRFID, LLC the firm will now be headquartered and operated from Lansdowne, Virginia, U.S.A. The Canadian dissolution transferred all assets from Ontario-based SkyRFID, Inc. to the new Virginia-based SkyRFID, LLC.

All Global Sky Partner channels conveyed to SkyRFID, LLC as well as current contracts, purchase agreements/orders, and projects which will all be subject to US and Virginia laws and policies as applicable.

SkyRFID, LLC continues the decades-long operation of solving asset management challenges, covering more than 135 countries. Solution integrations will continue to include NFC, RFID, RTLS, Wi-Fi, and IoT-based communication protocols and may support further interoperability with mobile cellular protocols such as GSM, GPRS, HSPDA+, 4G-LTE, and upcoming 5G protocols.

About SkyRFID, LLC
SkyRFID, LLC, the leader in Dynamic Asset Management, has become the “go-to” resource for security and tracking for real-time management of high-value, critical assets.

Having 30+ years of continuous improvement toward providing full scope capability, SkyRFID’s differentiation is realized in our consistent and reliable quality, optimal-cost hardware components end-to-end real-time tracking and reporting solutions; all which include our global consulting team supporting multiple industry verticals.

With its established global network of engineers, consultants, resellers, and system integrators, SkyRFID has become the premier partner for developing, implementing, and managing enterprise solutions.

SkyRFID assists at any or all levels from technical design to implementation of hundreds of RFID, sensor, and IoT technology projects each year, using its Global Sky Partner channel of over 500 companies in more than 135 countries to service local implementations and support.

For more information visit: www.SkyRFID.com

For sales information contact SkyRFID, LLC at +1 571-512-5262
E-mail: sales@skyrfid.com

Via EPR Network
More Industrial press releases

Digital Manufacturing platform Haizol expands with a new office in Suzhou, China

LONDON, 9-Jan-2022 — /EPR INDUSTRIAL NEWS/ — Headquartered in Shanghai, China, Haizol are growing from strength to strength in the manufacturing industry. From inception in 2015, they have opened offices throughout China year on year. Haizol now have a presence in 12 cities across China, making them the go to platform for connecting with manufacturers for custom OEM parts and products. Currently Haizol are in Shanghai, Shenzhen, Ningbo, Wuxi, Dongguan, Foshan, Huizhou, Suzhou, Changzhou, and Hangzhou. Last month they opened a new office in Suzhou, with an opening ceremony attended by government officials.

Haizol assists small and medium sized manufacturing enterprises in the procurement of resources, meeting output quotas, and manufacturing of traditional parts and components. Their one-stop sourcing solutions platform offers buyers a complete service from start to finish. From your requirements, they locate the best suppliers, then take care of the whole process from the initial order, to quality and inspection, and shipment.

Haizol’s connections span throughout China, having partnered with the best factories that specialize in CNC Machining, Injection Molding, Casting, Stamping, Fabrication, and Mold Making. Haizol also manufacturing products, from a simple CAD design, they can produce the product from prototype to full scale production. Haizol are experts in reverse engineering, whereby products are broken down into the separate parts in order to re-build and re-brand them.

Haizol’s instant quoting technology and extensive network of suppliers has revolutionized the custom manufacturing industry. Providing customers with quotes in under a minute, they get on demand access to high quality low cost manufacturing. For startups or large companies, 2D or 3D drawings can be securely uploaded to receive a dynamic quotation.

SOURCE: EuropaWire

Haizol adds component assembly to its digital manufacturing platform

LONDON, 23-Oct-2021 — /EPR INDUSTRIAL NEWS/ — Haizol, one of China’s largest manufacturers of custom parts, expands its offering to meet increasing customer demand. Now, the manufacturing giant offers services spanning from OEM manufacturing, to component assembly, and product development and manufacturing.

A true one-stop parts procurement and key component assembly platform, Haizol offer their customers a 20% increase in engineering productivity, 30% average cost savings, and 50% faster lead times.

OEM manufacturing requests come from countries worldwide, with their capacity to cater to anything from prototype to full scale production being a key driver. Haizol’s expertise in machining, injection molding, sheet metal manufacturing, customer service, and supply chain enable them to achieve customized goals in strict time frames. Offering over 100 metal and plastic options, and more than 10 surface finishes, the rapid prototyping and on-time delivery mean it is a one-stop solution to supply chains.

As an extension on OEM manufacturing, Haizol have introduced manufacturability solutions for core components of products through high-end machining and precision mold forming. Within the sphere of modern manufacturing services, Haizol is well placed thanks to its strong digital platform and vast project experience. They invest in engineering research and development to ensure the top quality delivery of parts. Haizol’s platform produces specialist equipment resources to improve manufacturing solutions for customers, whilst managing supply chains and production capacity.

Due to increasing demand, Haizol also now offers product development. For those with a product design, or wanting brand an existing product, Haizol offers manufacturing from drawings, and also reverse engineering, where they break an existing product down into components, and can manufacture it in this way.

Haizol simplifies the process of product customization procurement by providing customers with a huge supplier base and diverse production capacity features. Assess the world’s top manufacturing companies through Haizol, and let them handle the communication and production, covering all issues from quality control to delivery and customs.

Haizol’s manufacturing processes include Prototyping, Molding, Stamping, CNC Machining, Casting, Fabrication and more. Such comprehensive manufacturing capabilities allow Haizol to meet the needs of many industries across a wide range of product categories, including Automotive Parts & Equipment, Aerospace, Electrical Equipment, Electronics, Design & Engineering, Fabricated Metals, Medical Supply & Equipment, Machinery & Tools, Packaging, Toys, as well as general consumer goods.

Since its inception in 2015, HAIZOL Online has enthusiastically awarded multiple rounds of committed financial investment from the world’s top establishment and financial institutes such as Haier, Woofoo Capital, Eastern Bell Capital, Stala Capital and Hongtai Capital Holdings. Their clients include MicroPort, Roche, Siemens, Haier, Zeiss, Whirlpool, Rocker, and Hybrid Racing.

For more information or to learn more, head over to their new website at www.haizolglobal.com.

SOURCE: EuropaWire

Inspector 3.0 Changes The Face Of RVI Inspection

Perth, WA, Australia, 2021-Jul-26 — /EPR INDUSTRIAL NEWS/ — Inspection tasks are undergoing rapid advancement thanks to Remote Visual Inspection (RVI) tools, like the Elios 2. However, while there are many advantages to such drone inspection (speed, visualisation of hard to reach areas, increased health and safety etc), it also brings with it one significant challenge: 

That of pinpointing the location of defects. 

Unlike traditional inspection, where the defect is determined by the person in front of it, RVI inspection in areas like boilers requires multiple data input to gain an accurate location. This might include the use of maps, blueprints and barometric measurements. This is a complex task. Getting it wrong can have serious implications, the worst of which is undertaking significant effort (AKA time and money) to gain access to repair the defect, only to find you’re in the wrong place. 

Enter Inspector 3.0 

Inspector 3.0 is the newest version of Flyability’s Inspector software, specifically designed to be used with the Elios 2 for indoor inspections. 

This revolutionary data localisation program allows inspectors to create a 3D map immediately following an indoor drone inspection flight. The advantages of this are many, all of which combine to create one thing – significant savings for repair and maintenance tasks. 

  • Accurate defect location in real time: The whole reason for inspections is to identify defects. Being able to pinpoint them immediately after an inspection flight has taken place means efficient action plans can be immediately put in place.
  • Lowered costs: Wholly accurate localisation of a defect in a hard-to-reach asset area allows for exact planning to gain access. Whether this involves scaffolding, digging through dirt, cutting into the asset or any other means of access, it negates the risk of ending up in the wrong location. Such unhappy incidents are common and result in prolonged downtime and the associated loss of revenue.
  • Better communication: Industrial maintenance often includes many different personnel. From inspectors through to maintenance staff, C-suite level and managers, accurate data localisation can assist in helping everyone understand the needs of the inspection data. A 3D map speaks volumes and bypasses much of the requirement to fully understand technical data, therefore aiding comprehension at all levels and improving communication.
  • Improves customer relations: Performing inspections often causes frustration if a customer can’t see a tangible report of defect locations as soon as its finished. The ability to present them with a 3D visualisation straight away is hugely advantageous to customer confidence.

How Inspector 3.0 Works

1. Launch the indoor inspection mission: Using the Elios 2

2. Collect visual data: On the fly collection of data, allowing you to mark points of interest at the touch of a button

3. Create a 3D map: Following the flight, utilise the mapping feature of Inspector 3.0 to create a sparse map of the asset that includes the points of interest detected. This takes between 20-50 minutes to generate 

The Elios and next-generation Elios 2 continue to evolve, along with the software that goes alongside. Such innovations are key to driving down costs and increasing productivity in an ever-competitive marketplace.

Equipment provider, Nexxis, is committed to procuring such technology and providing the unique availability of a dynamic model that allows their customers to take full advantage of tech as it becomes available. 

Head to www.nexxis.com to discover the Nexxis difference, and why they’re becoming the equipment supplier of choice to industries as diverse as oil & gas, petrochemicals, manufacturing and aeronautical.

The Future of Robotics In The Petroleum & Petrochemical Industries

YANGEBUP, Perth, Western Australia, 23-Nov-2020 — /EPR INDUSTRIAL NEWS/ — The petroleum and petrochemical industries, although booming, face numerous challenges. These are only set to intensify as obtaining crude oil and petrochemicals by conventional and non-conventional means becomes more demanding financially, environmentally and in ever more hostile habitats. For these reasons the use of robotics and autonomous systems to carry out practical tasks is virtually a necessity for the industry to progress.

The time of the robot is well and truly upon us, and strategic use of such technology is set to bring about significant safety advances and cost efficiency for global industry. And this is particularly true when it comes to the production of petroleum and petrochemicals.

Because of the colossal value of these industries, with assets totalling billions of dollars, it’s understandable that those held responsible for ensuring continued profits are decidedly cautious when it comes to embracing new technology.

This means that the use of robots for inspection and maintenance is by no means the norm quite yet. But as more and more proof of the advantages becomes common knowledge, such solutions are becoming more widespread.

Inspection and maintenance challenges 

Historically, achieving efficient inspection and maintenance of assets is a necessary but expensive task that needs to be carried out on a regular basis. Challenges posed include:

  • Significant downtime of assets causing reduced revenue
  • High costs associated with the opening, inspection, cleaning and maintenance of assets
  • Lengthy preparation periods to set up scaffolding and vent toxic gases to create a safe environment for human entry
  • The risk to human life when entering confined spaces and non or reduced oxygen atmospheres
  • The high cost of specialist inspection and maintenance teams
  • Worker compensation following accidents or incidents
  • The risk of human error during inspection
  • Inadequate visualisation of certain structures that are inaccessible for humans

Such challenges have meant that inspections and necessary maintenance can take weeks – even months – to complete. While this is taking place revenue ceases, so the need for speed is paramount. In addition, such challenges create little enthusiasm for companies to carry out proactive inspection over and above what’s required by legal industry standards. 

Enter the robots

Rapidly advancing technology over the past decade has brought us to an era that’s truly able to overcome many of these challenges. And whilst we’re not quite in the realms of the most futuristic of sci-fi movies yet, the tech continues to advance. Today, robots such as crawlers and drones are able to reduce multiple challenges of inspection and maintenance, providing the opportunity for companies to not only meet health and safety requirements, but to exceed them, therefore reaping the benefits of proactive asset analysis and associated reduction in maintenance costs

Advantages of using robotics

As technology increases it becomes possible for companies to take advantage of robots to carry out tasks that present significant hazards to human life. Not only does this lower exposure to danger in this high-risk industry, but also provides a financial edge thanks to minimizing employee costs and improving manufacturing efficiency.

The latest in robotic developments have been dedicated towards ensuring they can be employed in real world situations, not simply in a laboratory. Over recent years the Defense Advanced Research Projects Agency (DARPA) has been pivotal in pushing such technology forwards, organising various tests and challenges for robotic manufacturers to overcome. These include the ability to handle tools, open doors, overcome unexpected obstacles, open valves and more.

Manufacturers have also had to ensure that such automaton tools are able to withstand explosive blasts. 

Recent advancements

The speed of technological advancement is expanding fast. Perhaps the most significant progression is that of increasing autonomy. Once only able to perform the basics, the capacity for robots to carry out more complex tasks is now either in existence or poised on the cusp of becoming reality. These include:

  • The ability to navigate autonomously
  • Identifying and solving problems
  • Learning from their experiences and those of others
  • Sharing a workspace with humans and interacting with them. 

Current and future opportunities

The four major industry processes of exploration, development, production and site abandonment are all ripe for increased usage of robotic technology to reduce costs, improve efficiency and increase safety.

Throughout all these stages there are many opportunities for robot use, especially in that of inspection and maintenance. Current and potential applications as the industry and technology moves forward include:

  • Using robots to enter confined spaces to carry out tasks. Not only does this dramatically decrease human risk, but negates the need for unnecessary downtime to prepare for human entry. Currently such health and safety procedures account for up to 80% of asset downtime, therefore the adoption of a robotic element within the workforce provides cost reduction on a significant scale.
  • The use of robots for other potentially hazardous tasks: These include working at height, working within low or non-oxygen environments, firefighting and working in non-temperate conditions.
  • As a replacement for humans in remote locations: Robots that can carry out more complex operations will reduce the need for human operators in locations such as offshore sites.
  • Reducing safety preparations in hazardous work locations: For example, a robot working at height or in a difficult to reach location will not require health and safety measures such as scaffolding and other preparations, therefore reducing costs, downtime and risk.

Furthermore, the reduced cost and time effect of using advanced robots allows for the adoption of much improved inspection and maintenance programs. Proactively carrying out such tasks leads to a considerably reduced chance of any unplanned maintenance issues and/or the occurrence of catastrophic events.

In short, the use of robots in the future will lead to a significant reduction in downtime of industry assets, lowered costs, increased human safety and the ability to work in ever more hostile, hard to reach environments.

In a global marketplace that’s predicted to reach over $7 trillion US dollars* (Oil & Gas) by 2024 and $958.8 billion** (Petrochemical) by 2025, companies, although sensibly judicious in their eagerness to take advantage of such technology, are fast-becoming aware of the competitive edge it can bring.

* https://www.globenewswire.com/news-release/2018/07/12/1536385/0/en/Oil-Refining-Market-worth-over-7-trillion-by-2024-Global-Market-Insights-Inc.html

** https://www.grandviewresearch.com/press-release/global-petrochemical-market

Logo:

Nexxis logo

Automotive Paint Robots Market: Collaborative Robots to Steer Future Trajectory of Automotive Industry

DUBLIN 2, Ireland, 08-Nov-2018 — /EPR INDUSTRIAL NEWS — Robotics in the automotive industry has been acclaimed as the impetus behind driving optimization and rethinking of production and process through innovative measures. Prospect of artificial intelligence is promising, with the ability to eliminate various inefficiencies in the automotive manufacturing, ranging from design and planning to maintenance and sales.

Robots have become increasingly palpable in supporting repetitive operations of car manufacturers, with the consensus that the robotics process automation (RPA) has translated into a proven technology, providing tangible benefits to automakers who deploy it. As in case of most technologies, with time, expenses linked with implementation and maintenance of RPA have diminished sharply – gaining significance as a manufacturing efficacy and capability enhancing option among small and large businesses alike.

A sample of the report is available upon request https://www.factmr.com/report/2232/automotive-paint-robots-market

Automotive paint robots are already a standard practice in the industry, wherein robotic arms spray bodywork – depriving the need for proficient manual painters and providing a more even, faster, and smoother finish. Automotive paint robot sales worldwide are foreseen to bring in revenues nearly US$ 700 Mn in 2018, recording a Y-o-Y growth of approximately 8%. Automotive paint robots have evolved over the years to become faster, lighter, and integrated with several activators and sensors.

Collaborative Robots to Steer Future Trajectory of Automotive Industry

Automotive industry continues to remain one of the largest and quickest adopters of the industrial robotics technology. Carmakers have huge plans for next-generation development of their factories, with smarter designs, collaborative robots and artificial intelligence emerging as secret ingredients to the flexible manufacturing – humans. For example – GM’s plant in Shanghai will soon produce electric vehicles with the aid of machines that work quietly in self-directed harmony.

Collaborative robots, or “cobots,” unrestrained by steel cages are being programmed in GM’s plant for working abreast humans on production lines – one unusual operation being handling installation of gears in transmissions. Automakers worldwide are embracing industry 4.0 and the concord alludes lesser intervention of humans. Focus is currently on improving efficiency and flexibility between humans and machines, while automakers concentrate on development of multiple models that are powered by electric motors or gas engines or both.

Approaches toward using collaborative robots and relevant digital tools will determine future layout and size of automotive manufacturing facilities. Ford Motor Co.’s future vision for electric vehicle production alludes the requirement for lower investment, fewer workers, and relatively compact floor area. The company has installed few collaborative robots in its recently renovated truck plant at Louisville, Kentucky. Digital tools such as augmented reality and predictive analytics for mapping new assembly lines and scheduling maintenance & repairs prior to machine breakdowns are also being deployed by this leading automaker.

Reluctance to Enormous Infrastructure Investment and Scarce Skillset Undermine Permeation

Most artificial intelligence systems and robotics are witnessing slow rate of adoption among leading players. For instance, Ford Motor Co has been reluctant to investing more on dedicated electric vehicle manufacturing unless there is consistent and sufficient demand for justifying the expense. Even Tesla, which long acclaimed implementation of robots to translate into an “alien dreadnought,” recently concluded at the fact that human intervention is underrated and excessive automation could involve more technical glitches.

Request methodology of the report at https://www.factmr.com/connectus/sample?flag=RM&rep_id=2232

Automotive companies are partly cautious in huge infrastructural investment, sensing future production orders might fall in line with new vehicle sales in the next economic downturn. Manufacturers currently favor lower debt loads to rid huge loan payments in case of stagnant revenue generation in the down market.

Scarce skillset is a key challenge being addressed by the automotive industry when it comes to RPA-driven plants. This can be attributed partly to Millennials’ distaste for manufacturing work as robots steadily replace humans against the backdrop of pressures on automakers to reduce the overall vehicle cost.

The report is available for direct purchase at https://www.factmr.com/checkout/2232/S

SOURCE: EuropaWire

Top 10 Reasons Why You Should Use Precision Laser Alignment

Perth, WA, Australia, 2018-Sep-18 — /EPR Network/ — A laser alignment system eliminates all the guesswork and unknowns associated with traditional measurement systems like dial gauges, straight edge methods and co-ordinate measurement machines (CMMs).

But their advantages stretch way beyond just the quality of the results that they deliver. Here are 10 of the top reasons why your operation should switch to precision laser alignment.

  1. PINPOINT ACCURACY. Unlike other systems, a laser tool can measure down to 0.001mm, even over long distances. The laser beam is always 100% straight and what’s more, laser systems automatically calculate for shims and adjustments values, so the results are always accurate. Unlike older technologies where accuracy may also be compromised because of reading errors, sticky dial hands and low resolutions, laser tools have extremely high resolutions for pinpoint accuracy.
  2. QUICK AND EASY SET UP AND FASTER RESULTS. The equipment is lightweight and easy to learn as well as use which means much shorter set-up times, preparation and measurements. It can also measure three axis directions in a fraction of a second, which results in further time-savings.
  3. MORE RELIABLE. Because lasers eliminate the possibility of human error and inconsistency, they’re more reliable and precise than any other method. Repeatability is another significant benefit and regardless of who is using the equipment and taking the measurements, the laser equipment will always deliver the same consistent results.
  4. ELIMINATES HARDWARE SAG. When a dial gauge is used, there is always a risk of some of the fixtures sagging which can compromise the accuracy of the displayed value. With a laser tool however, there is nothing to worry about with regards to fixtures dropping or sagging.
  5. SAVE BOTH MONEY AND TIME
    Faster set-up and operation coupled with the absolute precision of the results mean a laser tool can easily pay for itself in a matter of months.
  6. SOFT FOOT – HARD RESULTS. Machine frame distortion and soft foot issues can be problematic but unlike a dial gauge which only tells half the story, a laser alignment tool provides a true representation of what’s going at the feet of the rotating machinery as well as what’s happening with the movement between the axes of the shafts being aligned.
  7. VERSATILE. A quality laser alignment system does more than just measure alignment. These versatile tools enable optimum equipment set-up and operation, measuring base flatness, twist, squareness, bearing condition, spindle direction and straightness amongst others.
  8. ABILITY TO MEASURE WITH A SMALL SHAFT ROTATION. Measuring with a traditional dial gauge can require a rotation anywhere between 1800 and 3600. However, a laser alignment tool can take a complete measurement with a much smaller shaft rotation, sometimes as little as 400 which is advantageous especially when machine parts prohibit a full rotation.
  9. ENHANCED DATA MANAGEMENT. Advanced software solutions bring data management to a new level. PDF reports can be generated directly from the instrument, results can be examined in real time and the information can be integrated with an existing software system for record-keeping and reference purposes.
  10. REDUCED ENERGY CONSUMPTION. Half of all machine failures are caused by alignment errors, so it is critical that errors are identified and removed as early as possible – or better still, are prevented from happening in the first place. When machinery is well-aligned and running smoothly, it will consume less energy than a poorly-aligned one which is another compelling reason for choosing fast, accurate and reliable laser alignment technology.

Given that laser alignment tools are simple to learn, easy to use, highly accurate and deliver a wide range of benefits, there’s no need to continue using complicated dial gauges and other older technologies which may be compromising the efficiency of your rotating machinery as well as compromising your bottom-line.

Nexxis has worked with many customers across a diverse range of industries to develop customised solutions for their particular alignment requirements. Deciding to go for laser technology is a major step towards more efficient, cost-effective and productive machinery, but it’s critical that the tool – or combination of tools and accessories – that you choose are right for your unique needs in terms of cost, functionality and relevance to the application.
For expert, practical advice on a tailored solution, please contact Nexxis at nexxis.com.au to see their extensive range of quality technical equipment including world-class laser alignment products from Easy Laser and Rotalign.

Via EPR Network
More Industrial press releases

MTS Russia leveraged iBwave Design’s planning, propagation and capacity modelling features to deliver one the largest deployments of Massive MIMO in Europe to date

MONTREAL, Canada, 06-Jul-2018 — /EPR INDUSTRIAL NEWS/ — iBwave, the global standard for designing multi-technology in-building networks announced today that MTS, the leading telecommunications group in Russia, has successfully used iBwave Design to plan, design, deploy and manage modern high density and high capacity wireless networks for the 2018 Soccer tournament.

One of the main challenges during a major event like this is to be ready for the massive data demands put forward by excited fans using multiple devices in a stadium’s complex environment. To enable a fast, reliable fan experience during the 2018 Soccer, MTS Russia leveraged iBwave Design’s planning, propagation and capacity modelling features to quickly deliver one the largest deployments of Massive MIMO in Europe to date. iBwave Design was used to successfully plan and deploy high capacity networks for the following stadiums and surrounding areas: Luzhniki Stadium, Moscow (capacity: 80,000), Spartak Stadium, Moscow (capacity 45000), Rostov Arena Rostov-on-Don (capacity 45000) and Kazan Arena, Kazan (capacity 45000).

Through iBwave’s ability to design mobile networks in large complex venues such as stadiums, operators like MTS can create the ultimate wireless experiences by meeting the demands of a large number of people at a specific time without compromising on speed and quality. There is no margin for error in such an environment when the service is needed then and there without any disruption. Many players are needed to create this experience and iBwave’s design capability ties this all together. With iBwave on its team, MTS was able to deliver a great end user experience by leveraging design features such as signal and capacity modeling right down to inclined surfaces, complex architecture and body-loss calculations when the stadium is filled to capacity.

“It is always difficult to predict mobile consumer needs in high density, high capacity environments- particularly for a world class sporting event such this, where thousands of sports fans are simultaneously using multiple devices across multiple technologies,” says Seth Roy, Vice President Product Line Management at iBwave. “Based on our experience of connecting major sporting events such as past World Cups and the Olympics, our tools are the ideal choice to prepare for the huge amounts of data requirements during the 2018 World Cup. We are proud to support MTS in this project and extremely excited to be part of the design and deployment of Europe’s largest Massive MIMO experiences”, he added.

More than 3 million spectators are estimated to watch the games live during this month-long event, which is underway until July 15th.

SOURCE: EuropaWire

Line Generators for Machine Vision Offer Improved Performance

Coherent Inc. (Santa Clara, CA) has introduced a new range of diode-laser based line generators which deliver enhanced flexibility, unique output optimization capabilities, and extended lifetimes. This series of new line generators, called the StingRay, will enable the construction of faster and more accurate machine vision systems that utilize 3D triangulation. The   StingRay series mates a diode laser with high performance electronics and precision, refractive optics for collimation and line generation covering the widest available range of fan angles. They also incorporate optional diffractive elements for creating complex output patterns.  StingRay models are available with output powers as high as 200 mW and at key wavelengths throughout the 450 nm to 1550 nm spectral range, including the popular 450 nm, 520 nm, 635 nm, and 660 nm lines.

StingRay lasers are the first to feature an industry leading, line intensity non-uniformity down to ±5% in a standard product. This high uniformity reduces the need for image post-processing, and translates directly into increased measurement speed and dimensional accuracy. StingRay lasers are also unique in offering external user focusable optics, which allow the laser line to be precisely optimized for the exact distance over which it is projected.  Additionally, the StingRay’s optomechanical design permits “dynamic line balancing,” enabling simple correction of any intensity bias in configurations where the laser must be used at off axis illumination angles. To further enhance usability, Stingray lasers also include an internal “health monitor” that indicates when a diode module is approaching end of life, thus allowing for planned replacement, and avoiding production downtime due to an unexpected failure.

Via EPR Network
More Industrial press releases

New Laser Cutting Machine Offers Faster Throughput and Higher Accuracy

Coherent, Inc. (Santa Clara, CA) has extended its integrated laser tools product portfolio with its new META platform, offering improved performance and greater ease-of-use.  The META platform features a unibody chassis design. This rigid single weldment provides improved mechanical stability for the system, resulting in faster cutting speeds and better positioning repeatability. In addition, the cutting bed on META platform products has been enlarged to accommodate standard European sheet sizes (1.25 m x 1.25 m).

The control system has also been significantly upgraded with the help of our science laserresearchers. Specifically, the operator interface for META platform products has been changed to an industrial type controller. This is an ergonomic monitor/keyboard assembly that is directly mounted on the side of the chassis.  All interface cables for this system are now contained within the machine assembly, further enhancing its ruggedness and suitability for the increasingly industrial environments in which the platform is now being utilized.

Improvements have also been implemented in the META platform’s software. In particular, ease-of-use has been enhanced through a new, multilingual software interface, together with the implementation of greater system automation. Additionally, the system features automatic focus, advanced capacitive height sensing and a fully integrated machine vision system.

When configured with a Coherent 1 kW CO2 laser (Diamond E-1000), the META system offers unmatched flexibility, with the ability to process a wide range of both metals and non-metals, such as plastics, wood, fabrics, leather, paper and thin films. With this laser cutter tool, the system can readily cut stainless steel in thicknesses of up to 3mm, aluminum of up to 2 mm, and mild steel of up to 6 mm.

Via EPR Network
More Industrial press releases

Free Industrial Reference Guide Now Available on iPhone

Industrialfocus.com, a website dedicated to providing relevant information about industrial equipment and services, today announced the release of its iPhone application.

The Industrial Focus application is packed with information about a wide variety of industrial topics, including agriculture and forestry equipment, construction equipment and supplies, electrical and test equipment, and manufacturing equipment and tools.

According to Marilie Doman, editor at Industrialfocus.com, the new iPhone application provides unique value. “Consumer guides, reviews and detailed articles are added on a regular basis, allowing consumers of industrial products and services to use their iPhones as a source for detail research, or as a handy industrial reference guide.”

Industrial Focus is the first iPhone application for industrial equipment available in the app store.

Industrial Focus allows a user to see the latest articles, browse articles by category, or search for articles by keyword. The application provides the user with an intuitive interface, leveraging the iPhone’s unique features and capabilities. The user will have access to the following functionality in the free application:

•  Browse – Explore hundreds of articles by browsing an intuitive category tree
•  Search – Users can find specific content by utilizing the keyword search function
•  Latest articles – See the latest content, updated on a regular basis

The Industrial Focus iPhone application was developed in-house by D4DR Media. More information and a link to the iTunes download can be found at www.industrialfocus.com/iphone/.

Via EPR Network
More
Industrial press releases

Datacraft Solutions, Inc. And Danaher Corporation Announce Strategic Partnership

Datacraft Solutions, Inc., the lean manufacturer’s partner for building cost-effective digital supply chain replenishment networks, has successfully completed the third installation of its lean manufacturing solution for the Washington, D.C.–based Danaher Corporation, a leading lean manufacturer and has finalized agreements to implement in three more facilities over the next three months.

Datacraft Solutions, Inc. And  Danaher Corporation Announce Strategic Partnership

Signum is an automated digital supply chain technology that reduces inventory levels, increases productivity, continually improves process flow and provides realtime, visual and collaborative communication in the supply chain. Signum is delivered securely over the Internet without the need to install and maintain complex, expensive software.

Brian Burnett, the Vice President of the Danaher Business Systems Office (DBSO) and Procurement says, “A key performance indicator we measure across the Danaher businesses is inventory turns. When inventory turns consistently improve, a lot of the right processes are in place. We are excited about our partnership with Datacraft Solutions because they provide us with “low barrier to entry,” state of the art technology with which we can easily standardize across our organization. Datacraft enables us to integrate with our diverse back office systems, so we can leverage our existing processes and technology and move into production, quickly realizing results.”

“Datacraft’s approach is to work with the world’s premiere lean leaders to develop and operate businesses that generate outstanding financial returns”, said Stephen Parker, Datacraft CEO. “Our strategic partnership with Danaher draws on a joint commitment to develop world class inventory supply chain execution systems which yield unprecedented inventory turnover while supporting micro-short customer delivery cycles. This collaboration will be compelling not only for our companies, but also for our industries, our partners and, of course, for consumers”.

For more information on Datacraft Solutions’ products and services for building cost-effective digital supply chain replenishment networks, visit www.datacraftsolutions.com.

Via EPR Network
More
Industrial press releases

Leading Developer Of Individualized Solutions For Siphonic Roof Drainage Chooses Chicago Representative As First US Presence In The All Important Manufacturing Belt

After many successful years developing and distributing individual software solutions to plumbing manufacturers around the world, German-based Keidel Software announces a new US agent, Johannes Lenzhofer, Chicago, Illinois. Mr. Lenzhofer has a wide network of contacts, as well as years of experience representing German companies in the US.

“As a center of the manufacturing belt, Chicago is a strategic city for us” explains Rolf H. Keidel, founder of the company. “The DrainStar® Siphonic Calculator helps American roof drain and pipe manufacturers precisely calculate a planned drainage network using their own product information and relevant data. However, it also adds value to the manufacturer’s products by providing the data and drawings for construction of the drainage network that their customers can use. The manufacturer becomes a system provider that offers solutions– not just a seller of drains and pipes. This adds great value to the manufacturer’s products and brand.”

The precision of the DrainStar Siphonic Calculator software also results in cost savings of about 30% on average because the exact drainage performance of the roof runoffs is calculated. The manufacturer easily enters any product information with other key figures about the planned drainage network, and the network plan appears on the computer screen, including all the needed components. The manufacturer decides whether to create bills of material with or without prices, while the data can be converted into estimates or tender offers instantly. The network drawing can easily be transferred to CAD. All country-specific variables can also be used.

“US companies who want to take advantage of government and other incentives for ‘green’ building projects will recognize the opportunities presented by calculating siphonic drainage networks,” adds Mr. Lenzhofer. “By using a siphonic design, LEED™ points are awarded, signifying energy efficient and environmentally friendly construction practices. These points can translate into increased profitability.”

The LEEDâ„¢ green building rating system encourages design and construction practices that increase profitability while reducing negative environmental impact on buildings. The environmental benefits of siphonic roof drainage are clear. Properly calculated siphonic drainage networks can result in reduced site disturbance and preparation, as well as a reduction in the use of construction materials. Pipe diameters are much smaller, the number of roof runoffs and downpipes is greatly reduced, and fewer ground lines need to be laid. These and other desired results are eligible for valuable LEED credits, and offer significant cost cutting for builders.

About Keidel Software
Keidel Software was founded in 1993 to develop and provide software solutions for the building industry around the world. Keidel Software is the market leader in Germany and has customers throughout Europe, Asia and the United States.

Contact Information Keidel US
For more information visit: http://www.keidel-software.com/us/index.php 

Via EPR Network
More 
Industrial press releases