Tag Archives: Nexxis

Inspector 3.0 Changes The Face Of RVI Inspection

Perth, WA, Australia, 2021-Jul-26 — /EPR INDUSTRIAL NEWS/ — Inspection tasks are undergoing rapid advancement thanks to Remote Visual Inspection (RVI) tools, like the Elios 2. However, while there are many advantages to such drone inspection (speed, visualisation of hard to reach areas, increased health and safety etc), it also brings with it one significant challenge: 

That of pinpointing the location of defects. 

Unlike traditional inspection, where the defect is determined by the person in front of it, RVI inspection in areas like boilers requires multiple data input to gain an accurate location. This might include the use of maps, blueprints and barometric measurements. This is a complex task. Getting it wrong can have serious implications, the worst of which is undertaking significant effort (AKA time and money) to gain access to repair the defect, only to find you’re in the wrong place. 

Enter Inspector 3.0 

Inspector 3.0 is the newest version of Flyability’s Inspector software, specifically designed to be used with the Elios 2 for indoor inspections. 

This revolutionary data localisation program allows inspectors to create a 3D map immediately following an indoor drone inspection flight. The advantages of this are many, all of which combine to create one thing – significant savings for repair and maintenance tasks. 

  • Accurate defect location in real time: The whole reason for inspections is to identify defects. Being able to pinpoint them immediately after an inspection flight has taken place means efficient action plans can be immediately put in place.
  • Lowered costs: Wholly accurate localisation of a defect in a hard-to-reach asset area allows for exact planning to gain access. Whether this involves scaffolding, digging through dirt, cutting into the asset or any other means of access, it negates the risk of ending up in the wrong location. Such unhappy incidents are common and result in prolonged downtime and the associated loss of revenue.
  • Better communication: Industrial maintenance often includes many different personnel. From inspectors through to maintenance staff, C-suite level and managers, accurate data localisation can assist in helping everyone understand the needs of the inspection data. A 3D map speaks volumes and bypasses much of the requirement to fully understand technical data, therefore aiding comprehension at all levels and improving communication.
  • Improves customer relations: Performing inspections often causes frustration if a customer can’t see a tangible report of defect locations as soon as its finished. The ability to present them with a 3D visualisation straight away is hugely advantageous to customer confidence.

How Inspector 3.0 Works

1. Launch the indoor inspection mission: Using the Elios 2

2. Collect visual data: On the fly collection of data, allowing you to mark points of interest at the touch of a button

3. Create a 3D map: Following the flight, utilise the mapping feature of Inspector 3.0 to create a sparse map of the asset that includes the points of interest detected. This takes between 20-50 minutes to generate 

The Elios and next-generation Elios 2 continue to evolve, along with the software that goes alongside. Such innovations are key to driving down costs and increasing productivity in an ever-competitive marketplace.

Equipment provider, Nexxis, is committed to procuring such technology and providing the unique availability of a dynamic model that allows their customers to take full advantage of tech as it becomes available. 

Head to www.nexxis.com to discover the Nexxis difference, and why they’re becoming the equipment supplier of choice to industries as diverse as oil & gas, petrochemicals, manufacturing and aeronautical.

7 Belt Storage Tips

Perth, WA, Australia, 2019-Mar-15 — /EPR INDUSTRIAL NEWS/ — Even though most technicians know that the way that belts are stored can have a significant impact on their performance, the appropriate level of attention and care isn’t always paid to belt storage.

Often, improper storage procedures are the reason for premature belt failure. Improper storage can damage the tensile cord, dooming the product to failure because of damage incurred prior to installation on the drive.

For belts to retain their serviceability and for optimum reliability and consistent performance, they have to be properly stored. It’s as simple as that.

Proper storage means:

  • Less likelihood of premature failure
  • Extended service life
  • Improved performance
  • Enhanced safety
  • Better warranty protection

Here are seven recommendations for proper belt storage:

1. Store belts in a cool and dry environment. Ensure belts are stored away from windows or glassed areas, so as to avoid direct sunlight and eliminate any risk of exposure to moisture.

2. Belt performance is halved for every 9.50C above 460C, so if your operation is located in areas where extreme heat is experienced, such as many sites around Western Australia, you need to take extra precautions to maintain moderate temperatures where the belts are stored. The temperature should not exceed 29.50C and relative humidity should be below 75% to prevent the risk of mildew or fungus.

3. Belts should also be stored well away from any heating device or ozone-generating devices such as transformers and electric motors. They should also be kept well away from any risk of contamination from airborne chemicals.

4. Store belts on shelves in boxes (preferably the original box) or other protective containers, but don’t force the belts into the boxes and distort them. Avoid crimping or sharp bends in the belts too. You should also limit the contents of each container to prevent the weight from damaging the belts at the bottom of the pile.

If you can avoid it, keep belts off the floor as they risk getting damaged from traffic as well as from liquid or chemical spills.

5. When storage time exceeds six months, the belt tension should be relaxed. If stored properly under the right conditions, belts can be stored for up to six years.

6. Avoid twisting, bending or crimping belts during handling and storage as this may damage them. Always adhere to the manufacturers’ recommendations in terms of bending diameter and tension. Longer belts can be stored coiled in large diameter loops.

7. Avoid hanging belts from small diameter pegs as they could distort over time caused by the suspended weight of the belt, but if you are storing the V-belt on a wall rack, use a saddle that has a diameter at least as large as the recommended sheave or sprocket minimum for that particular cross-section.

By adhering to the guidelines and recommendations above, you will gain the maximum life and optimum reliability and performance from your V-belt or synchronous belt.

For any other information about belt storage and handling procedures, or for any other technical equipment query, get in touch with the professionals at Nexxis.

Nexxis is a leading Australian supplier of world-class technical equipment for a wide cross-section of industries and their experienced team will be more than happy to answer any questions you may have. Get in touch with them on 08 9418 4952 or visit nexxis.com.au.

Via EPR Network
More Industrial press releases

Top 10 Reasons Why You Should Use Precision Laser Alignment

Perth, WA, Australia, 2018-Sep-18 — /EPR Network/ — A laser alignment system eliminates all the guesswork and unknowns associated with traditional measurement systems like dial gauges, straight edge methods and co-ordinate measurement machines (CMMs).

But their advantages stretch way beyond just the quality of the results that they deliver. Here are 10 of the top reasons why your operation should switch to precision laser alignment.

  1. PINPOINT ACCURACY. Unlike other systems, a laser tool can measure down to 0.001mm, even over long distances. The laser beam is always 100% straight and what’s more, laser systems automatically calculate for shims and adjustments values, so the results are always accurate. Unlike older technologies where accuracy may also be compromised because of reading errors, sticky dial hands and low resolutions, laser tools have extremely high resolutions for pinpoint accuracy.
  2. QUICK AND EASY SET UP AND FASTER RESULTS. The equipment is lightweight and easy to learn as well as use which means much shorter set-up times, preparation and measurements. It can also measure three axis directions in a fraction of a second, which results in further time-savings.
  3. MORE RELIABLE. Because lasers eliminate the possibility of human error and inconsistency, they’re more reliable and precise than any other method. Repeatability is another significant benefit and regardless of who is using the equipment and taking the measurements, the laser equipment will always deliver the same consistent results.
  4. ELIMINATES HARDWARE SAG. When a dial gauge is used, there is always a risk of some of the fixtures sagging which can compromise the accuracy of the displayed value. With a laser tool however, there is nothing to worry about with regards to fixtures dropping or sagging.
  5. SAVE BOTH MONEY AND TIME
    Faster set-up and operation coupled with the absolute precision of the results mean a laser tool can easily pay for itself in a matter of months.
  6. SOFT FOOT – HARD RESULTS. Machine frame distortion and soft foot issues can be problematic but unlike a dial gauge which only tells half the story, a laser alignment tool provides a true representation of what’s going at the feet of the rotating machinery as well as what’s happening with the movement between the axes of the shafts being aligned.
  7. VERSATILE. A quality laser alignment system does more than just measure alignment. These versatile tools enable optimum equipment set-up and operation, measuring base flatness, twist, squareness, bearing condition, spindle direction and straightness amongst others.
  8. ABILITY TO MEASURE WITH A SMALL SHAFT ROTATION. Measuring with a traditional dial gauge can require a rotation anywhere between 1800 and 3600. However, a laser alignment tool can take a complete measurement with a much smaller shaft rotation, sometimes as little as 400 which is advantageous especially when machine parts prohibit a full rotation.
  9. ENHANCED DATA MANAGEMENT. Advanced software solutions bring data management to a new level. PDF reports can be generated directly from the instrument, results can be examined in real time and the information can be integrated with an existing software system for record-keeping and reference purposes.
  10. REDUCED ENERGY CONSUMPTION. Half of all machine failures are caused by alignment errors, so it is critical that errors are identified and removed as early as possible – or better still, are prevented from happening in the first place. When machinery is well-aligned and running smoothly, it will consume less energy than a poorly-aligned one which is another compelling reason for choosing fast, accurate and reliable laser alignment technology.

Given that laser alignment tools are simple to learn, easy to use, highly accurate and deliver a wide range of benefits, there’s no need to continue using complicated dial gauges and other older technologies which may be compromising the efficiency of your rotating machinery as well as compromising your bottom-line.

Nexxis has worked with many customers across a diverse range of industries to develop customised solutions for their particular alignment requirements. Deciding to go for laser technology is a major step towards more efficient, cost-effective and productive machinery, but it’s critical that the tool – or combination of tools and accessories – that you choose are right for your unique needs in terms of cost, functionality and relevance to the application.
For expert, practical advice on a tailored solution, please contact Nexxis at nexxis.com.au to see their extensive range of quality technical equipment including world-class laser alignment products from Easy Laser and Rotalign.

Via EPR Network
More Industrial press releases

The Effects Of Misaligned Equipment

Perth, Western Australia, Jun-27-2017 —  /EPR INDUSTRIAL NEWS/  — Nexxis are one of Australia’s leading suppliers of specialist remote visual inspection (RVI) technology and non destructive testing (NDT) equipment and they have all the answers to your equipment misalignment problems.

Industrial operations are losing huge sums of money because the centrelines of the shafts of their rotating equipment (such as pumps and motors) aren’t running on the same axis and are therefore misaligned – with some industry sources going as far as saying that shaft misalignment is to blame for up to 50% of all machine breakdowns.

And when you consider that a survey by a leading rotating equipment service company found that less than 10% of machines that were evaluated were aligned within acceptable tolerances, misalignment is clearly a widespread problem.

Here are some of the costly and damaging effects of equipment that is poorly aligned or misaligned.

Excessive vibration
Misalignment is one of the leading causes of vibration problems – and as the reliability of the machine corresponds directly with the level of vibration, excessive radial and axial vibrations will impact negatively on performance. All rotating equipment will produce a certain level of noise, but when the shafts are misaligned and the equipment vibrates excessively, noise levels will also escalate correspondingly.

Premature failure of seals and bearings
Accelerated failure of seals and other parts is costly – and even the slightest misalignment can result in excessive force and stress being put onto the bearings and seals. Replacement parts are expensive, plus there’s also the risk of damage and contamination of other components from the leaking fluid from the stressed seals and bearings.

Increased energy costs
Misalignment correlates directly to higher power consumption as the machines are less efficient and therefore draw greater amounts of energy.

Excessive heat
In the same way that variations in temperature can cause misalignment, misalignment can cause machines to overheat which results in lubrication issues as well as safety risks.

Broken shafts
Misalignment can cause the shafts to break or crack – and this can lead to unplanned downtime and production problems as well as costly equipment repair.

Higher operating costs, loss of production and increased maintenance costs
Misaligned machinery generally has a shorter service lifespan and this premature failure of capital equipment adversely affects outputs as well as negatively impacting the operation’s balance sheet. Higher maintenance costs, costly downtime, unexpected capital costs for equipment replacement, increased inventory for spare parts and even the potential for catastrophic machinery failures are all consequences of misalignment-induced mechanical failures.

Inferior quality outputs
Misaligned machinery can also result in inferior or defective products which can impact on profitability.

Implementing a careful and thorough preventative maintenance programme will go a long way towards minimising the risk – and the associated costs – of misaligned machinery. To find out how a customised solution can ensure that your operation runs at optimum efficiency, you should contact Nexxis on 08 9418 4952 or via their website, nexxis.com.au.

###