Tag Archives: EWF

EWF along with its partners developed the first International Additive Manufacturing Qualification System

PORTO SALVO, Portugal, 28-Nov-2019 — /EPR INDUSTRIAL NEWS/ — Additive Manufacturing is entering fast into the mainstream since most industries, if not all, are bound to benefit from its nearly endless possibilities of customization and on-demand production. It is already redefining many industries, and it has the potential to disrupt traditional business models and value chains, providing companies willing to fully embrace this technology with a significant competitive advantage. One of the reasons that its growth has not been as fast as anticipated is the lack of qualified professionals capable of dealing and operating in Additive Manufacturing. Essentially, the shift in existing job definitions and the emergence of new skill sets require continuous up/reskilling to meet the needs of an economy that is increasingly blurring the lines between the physical and digital world. That is why EWF has, along with its network of partners, developed the first International Additive Manufacturing Qualification System to support the fast adoption of this new market.

This new qualification system relies on EWF’s expertise in the development of advanced harmonized qualifications that are broadly used and recognized. These qualifications, as with all other developed by EWF, are a result of the cooperative work between the federation and experts representing both industry and education (e.g. training centres, universities, and research organisations), that agreed on the technical and pedagogical structure of the qualifications needed for current and future professionals in metal additive manufacturing. The collaboration with organizations supported by several European projects, ensures that a crucial fast track adoption of this first European/International Qualification System for Additive Manufacturing personnel is made possible.

EWF currently offers Qualifications in Metal AM, three at the Operator level and three at Engineering level. And they have been gathering momentum, with the International harmonised qualifications for professionals in additive manufacturing already recognized in 33 European countries. The first countries offering these qualifications are Italy, Germany, France, UK and Spain, and the first course for Laser Powder Bed Fusion (LPBF) operator started this year in Italy, with the first diplomas already awarded.

SOURCE: EuropaWire

Prometheus project to bridge the existing gap between niche and mainstream applications for high power ultra-short pulse laser surface processing

PORTO SALVO, 4-Apr-2019 — /EPR INDUSTRIAL NEWS/ — Prometheus’ project will bridge the existing gap between niche and mainstream applications for high power ultra-short pulse laser surface processing. This advanced technology enables the production of materials with advanced properties such as non-stick, low wear/friction, oleophobic or hydrophobic, but through this unique project will deliver a broad range of surface functionalities onto metals, polymers and ceramics by way of high throughput, high spatial resolution Direct Laser Interference Patterning (DLIP) surface processing. It is expected to deliver unprecedented surface texturing speeds of up to 5 m2/min and enable high resolution features down to 1 μm to be produced with minimal heat impact on work pieces. This ambitious project represents a pan-European EU consortium of world leading organizations, from industrial and research partners to four manufacturers – Maier, Johnson and Johnson, Fiat Chrysler Automobile group and Arcelik – that will be able to assess the project’s outputs against current industrial processes. Wrapping up the thee-year project, and through breakthrough developments in laser sources, optics, process setup, control and monitoring, the consortium will deliver an integrated laser processing demonstrator system to showcase its capabilities according to the established goals.

Beyond the expected improvement on accuracy, the Prometheus project qualitative objectives include better resources utilization from raw materials to energy and waste. It is also expected a quantum leap on the speed of materials’ processing, as mentioned, by reaching 2-5 m2/min, while also minimizing heat impact on sensitive materials. The project aims to achieve improved flexibility and allow for a simpler product customization – all of this at a fraction of existing solutions’ cost. The case studies being developed include a dishwasher, a tumble dryer, a cylinder piston liner, and high strength aluminium pressing for automotive.

The unique ability of this technology to deliver precise periodic arrays of surface features at an unprecedented processing rate will contribute to its entrance into mainstream manufacturing processes, from its current usage in niche ultra-high value applications. The DLIP (Direct Laser Interference Patterning) technology enables the full utilisation of the high-power laser systems delivering profound productivity gains versus current technologies. Also, by being digital by default, the system enables rapid reconfiguration to deliver customised surface functionalities and patterns on a component by component basis.

Keeping Europe at the core of innovation and environmental leadership

This unique project will bring to light a high potential high power ultra-short pulse laser processing system. Prometheus will address some of the key European 2020 societal challenges, both by ensuring that European companies and research organizations stay at the leading edge of the new
manufacturing technologies and by creating new jobs opportunities. At the same time, the project will minimize environmental impacts.

Prometheus will also contribute to support the goal of increasing investment in innovation up to 3% of the EU’s GDP. The new approaches to surface engineering made possible by this technology will have an impact on the increase in R&D spending, both in photonic component development
necessary to control the increased power densities and in widespread application development.

The exceptionally high processing rate enables cost-effective processing to price-sensitive industrial sectors such as the consortium partners, spanning automotive, fast-moving consumer goods (FMCG), white goods and consumer durables. The effect will also be felt on the overall value chain, given the expected technology transfer and training across manufacturing sectors, as it becomes mainstream.

SOURCE: EuropaWire

Europe seeks to retain its leading position in industrial competitiveness with new project on Additive Manufacturing skills

PORTO SALVO, 25-Mar-2019 — /EPR INDUSTRIAL NEWS/ — Technology is evolving at a much faster pace than the development of the workers’ skills to use it. Most of the current initiatives and projects that focus on skills shortages are developing skills for existing needs and shortages, meaning that industry is already demanding personnel with those competences. Looking at a bigger picture, it means that there is no strategical approach to skills in Additive Manufacturing and that the current methodology to answer to skills needs is based on reaction instead of prediction and planning. Adding to this, the time between identification of the skills needs and shortages and the capability of deploying qualification/training modules to address them is not aligned with the industry requirements, since in most cases it takes about 1-2 years to create the required professional profile/qualification or competence unit/training module and to have it deployed.

The Wohlers Report 2018 on 3D Printing and Additive Manufacturing states that the overall additive manufacturing industry grew 21% in 2017 as the industry expanded by more than €1 thousand million. According to Ernst & Young, the demand for AM and related services has increased in the last years and is expected that in 2020 the market volume reaches €10 thousand million.

As Europe seeks to retain its leading position in industrial competitiveness, there is an urgent need to establish a platform for Additive Manufacturing (AM) skills at European, National and Regional levels.

To meet this challenge the project Sector Skills Strategy in Additive Manufacturing (SAM) started in January 2019. The initiative will tackle the current European need for developing an effective system to identify and anticipate the right skills for the Additive Manufacturing (AM) sector demands in response to the increasing labour market needs, thus, contributing for the smart, sustainable and inclusive growth of the AM sector

To address the challenges described above the SAM project intends to:

  • Build a sector skills strategy in AM;
  • Assess and anticipate skills (gaps and shortages) in AM;
  • Support with data the AM European Qualification System and foster wideness of its scope;
  • (Re) design professional profiles according to the industry requirements;
  • Develop specific relevant qualifications to be delivered for the AM Sector;
  • Increase the attractiveness of the sector to young people, whilst promoting gender balance;
  • Strengthen education-research-industry partnerships and encourage creativity “in companies and relevant educational and scientific institutions”;
  • Track students, trainees and job seekers and promote match making between job offer and search.

SAM will promote the AM sector by engaging with different target groups, namely, existing workforce, students from the primary school, vocational education and training and higher education, by putting in place an awareness campaign, stimulating the creativity of the partnership as well as of the audience.

Project partners

SAM project consortium is composed of 16 partners of which EWF is the coordinator. It encompasses industrial representatives from the AM sector, organisations involved in the fields of Vocational Education and Training (VET) and/or Higher Education (HE), and umbrella organisations. The consortium is strongly committed with the aim of supporting the growth, innovation, and competitiveness of the AM sector, since all partners have expertise in manufacturing technology and/or in the provision of education, and all of them are recognised players in the field. This ambitious project has a duration of 48 months and ends on 31st December 2022.

List of partners:

  • EWF – EUROPEAN FEDERATION FOR WELDING, JOINING AND CUTTING
  • CECIMO – CECIMO – EUROPEAN ASSOCIATION OF THE MACHINE TOOL INDUSTRIES
  • FUNDACIÓN IDONIAL
  • EPMA – THE EUROPEAN POWDER METALLURGY ASSOCIATION
  • MATERIALISE
  • GRANTA DESIGN
  • RENISHAW
  • LORTEK
  • MTC – MANUFACTURING TECNHOLOGY CENTRE
  • FUNDACIÓN AITIIP –
  • ISQ – INSTITUTO DE SOLDADURA E QUALIDADE
  • LMS – LABORATORY FOR MANUFACTURING SYSTEMS & AUTOMATION
  • UBRUN – BRUNEL UNIVERSITY LONDON
  • ECOLE CENTRALE DE NANTES
  • LZH LASER AKADEMIE GMBH
  • POLIMI – POLITECNICO DI MILANO

SAM project is funded by the European Union’s Erasmus+ (Sector Skills Alliances in VET – Blueprint).

SOURCE: EuropaWire

DIGIWELD to develop an open and innovative digital learning system (SIMTRANET) and education materials in welding technology

PORTO SALVO, 22-Jan-2019 — /EPR Industrial News/ — Embracing the learning challenges of the new digital era is the main goal of the DIGIWELD project, which aims at providing digital tools for education and innovative practices for students from Vocational Education and Training Schools, as well as for welders who want to keep abreast of the new skills and competences required for new welding technologies.

This project comes at a critical juncture, with the pace of change for businesses and the global economy accelerating and new digital and manufacturing technologies reshaping entire industries, a challenge to existing workforce qualifications, who have to adapt or risk obsolescence. To address these new requirements, broader access to education and training for skills development is fundamental, coupled with new, flexible learning options. Together, they are reshaping both traditional education and Vocational and Educational Training. A workforce able to cope with the new manufacturing and digital technologies becomes a driving force to competitiveness, since improved workforce skills triggers innovation and growth, move production up the value chain and are fundamental to shape the future labour market.

Online learning platforms are one key asset to provide broad education to all those looking to improve their skills or gain new ones, and that is the unique position of DIGIWELD project, whose aim is to develop an open and innovative digital learning system (SIMTRANET) and education materials in welding technology. The benefits of this digital learning tool include reduced time and cost for industrial partners, a flexible learning tool for those looking to improve their existing skills, a better fit to the new generation of welding apprentices who are, by definition, digital natives, a set of new technologies and teaching methods for trainers and teachers and, finally, an improved education and training process, one that focuses both on apprentices need and employer’s requirements.

The project’s key deliverables over the course of its two-year duration include the development of:

• Curricula for training welders using simulators and updating EU Guidelines for the European/International Welder IAB – 089r5 – 14
• Digital tool to be inserted in simulators as modules dedicated to the training of apprentices (16-20 years old)
• Training 24 trainers and involving min 60 apprentices in the welding profession

Once fully developed, it is expected that new project will provide a unique insight to propose the transfer of innovation to the other 27 countries of the EWF network. As a result, it is expected that at least 5 new training courses will be provided to the market.

Closing the gap between traditional and Vocational Education and Training

The shift to a knowledge-based economy implies a workforce with higher skillsets. CEDEFOP – European Centre for the Development of Vocational Training – forecasts that the proportion of jobs in the EU requiring tertiary level qualifications will increase from 29% in 2010 to 34% in 2020. This comes in a context in which European education and training systems continue to fall short in providing the right skills for employability and are not working adequately with business or employers to bring the learning experience closer to the reality of the working environment. These skills mismatches are a growing concern for European industry’s competitiveness.

Welding is one such case, in that it is both highly technical on its execution and increasingly digital, but the number of Initial Vocational Education and Training apprentices, in spite of efforts to lure more young students, still fails to meet the expected business and industry requirements to ensure long-term needs. And work-based learning (e.g. apprenticeships in a real company environment) has not been as widely accepted by students and companies as expected, which means new and more enticing ways to use WBL need to be developed. Given the diversity of applications in industry, even students undergoing formal welding qualifications need to follow other study programmes to be qualified in specific procedures and then to pass an additional exam to be certified by a national/international body.

These unique circumstances and environment were the driving force behind the creation of DIGIWELD project, whose consortium represents a strategic partnership between international education and training entities with the main goal to offer an adequate platform for acquiring and developing basic skills and key competences for apprentices, as well as for teachers/trainers in the field of welding and digital learning based on simulators.

On the first part of the project, the 6 partners will develop the new system and training courses and seminars will be offered to the labour market. Once developed and approved by the EWF members, the curricula will become part of the Guideline and Italy, Romania, Portugal and Spain will become the core implementers of the new Guideline inside the 31 countries of EWF, with apprentices using the new training courses to become qualified welders at least in 3 countries. As a growing number of courses start being requested by the labour market, partners will continue their work dedicated to the improvement of the system. Once fully tested and implemented, it is expected that the system will become widely available to the remaining 27 countries of EWF and help the technical schools to build the training system for their apprentices.

Project partners

The DIGIWELD project brings together six organizations from Romania, Belgium, Spain and Italy. The consortium partners include ASR – Asociatia de Sudura din Romania; EWF – European Federation for Welding, Joining and Cutting; CESOL – Asociacion Espanola de Soldadura y Tecnologias de Union; IIS Progress s.r.l. – Istituto Italiano della Saldatura; Colegiul Tehnic “Domnul Tudor”; and ATS – Augmented Training Services, S.L.

The project’s associated partners include the General Directorate of Training; University of Cracovia; Pronanomant Association; Astra Rail S.A.; ISIM Timisoara; Goierri Scola; University of Cadiz; Masa Huelva; Ministry of education of the Junta de Andalusia; Salesian educational community of Huelva; and lastly, the Directorate General for Social Assistance and Child Protection.

DIGIWELD project has received funding from the European Union’s Erasmus+ (Strategic Partnerships for vocational education and training).

SOURCE: EuropaWire